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Abstract—Automated Metering Infrastructure (AMI) has
gradually become commonplace within the utilities industry
and has brought with it numerous improvements in all related
fields. Specifically in tariff setting and demand response models,
classification of smart meter readings into load profiles helps in
finding the right segments to target. This paper addresses the
issue of assigning new customers, for whom no AMI readings
are available, to one of these load profiles. This post-clustering
phase has received little attention in the past. Our framework
combines commercial, government and open data with the
internal company data to accurately predict the load profile of a
new customer using high performing classification models. The
daily load profiles are generated using Spectral Clustering and
are used as the dependent variable in our model. The framework
was tested on over 6000 customers from GDF SUEZ in Belgium
and six relevant load profiles were identified. The results show
that the combination of internal data with commercial and
cartographic data achieves the highest accuracy. Using external
data alone, the model was still able to adequately place customers
into their relevant load profile.

Index Terms—Advanced Metering Infrastructure, Load Pro-
file, Spectral Clustering, Classification, Open Data

I. INTRODUCTION

W ITH the rise of the Advanced Metering Infrastructure
(AMI) over the past few years, vastly more energy

consumption data is being collected today, and at a higher
resolution than before. This facilitates innovative technologies
and smart analytics to gain deeper insight into both the micro-
and macro-level power consumption patterns of consumers. In
addition, they also effectively improve control over the whole
energy demand/supply system. These insights facilitate the re-
alization of management techniques such as demand response,
dynamic payment programs and flexible consumption hours
[1], [2]. Programs such as targeted tariff schemes are getting
more and more attention as energy retailers in competitive
markets seek to better balance their loads and to maximize
their total profitability [3]. The customers also benefit from
them as they can gain insights into their energy consumption
and lower it, or shift it to less expensive times in order to
reduce the total cost of their energy bill. To execute these
programs effectively, the electricity retailers have to predict
which customers will participate in a certain demand-response
measure and to allocate each customer to one of the schemes.

Prediction and classification of energy customer behavior
is therefore an important field in domain-driven data mining.
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For the consumption side, besides forecasts, one is interested
in customer load profiles that provide insights about their
daily, weekly, or monthly behavior. While previously these
profiles were made by the producers, more and more they
are based on real data coming from AMI that is installed
on-site. As behaviors change dramatically over time, decision
makers are in need of learning algorithms that enable them to
act upon these changes. Unsupervised methods are means for
this kind of data analysis. Clustering algorithms detect groups
of customers showing highly similar behavior, without any
prior knowledge about these groups. For instance, in demand-
side management and tariff setting, these clusters are used for
specific strategies in each customer group. Current literature
indicates that spectral clustering is very well suited to this end
as it has a stronger focus on the shape of the loads and detects
similar patterns with a small shift [4]. For a full overview of
methods that cluster these load patterns, we refer the reader
to the surveys of Chicco [5] and Zhou [6].

However, once a load profile has been generated, assigning
new and existing customers to one of these profiles remains
a difficult task, not in the least because of the lack of an
ubiquitous AMI. This classification step relates to the post-
clustering phase [5]. Given the importance of custom tariff
offerings, this is still highly relevant. To do this, consumers
are often associated with a predefined customer load profile.
Currently, a customer is assigned to one of these profiles
based on commercial codes or his type of application [5],
[7]. Within commercial codes however, often there can still
be big differences in consumption patterns [5]. Nowadays,
much more information is available that can help in this
assignment. To our knowledge, little research has been done
to assess whether adding information from government bodies
and other commercial players can enhance this classification.
Preliminary research illustrated the potential of adding such
variables, but it did not provide conclusive results yet [8].

In response to this gap, this paper enriches the internal
company data a producer may possess with commercially
available data to predict load profiles for the business-to-
business market. For this we will first generate load profiles
with a spectral clustering algorithm [4]. After this step we
will try to predict these clusters using internal company
information combined with data from government bodies and
commercial companies. These additional data types include
publicly available municipal data (demographics, crime rates,
...), publicly available cartographic data (lot size, building size,
usable area, heatmap) and commercially available company
data (turnover, number of employees, ...). To verify the quality
of our model, we will compare two popular classification algo-
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rithms, namely Adaptive Stochastic Boosting [9] and Random
Forests [10]. We use data from 6000+ smart meters throughout
Flanders in Belgium from non-residential customers over a
period of two years. The aim of this paper is to determine
whether we can succesfully assign a customer, for whom no
smart meter data is available, to its relevant load profile so
that the energy producer can act upon this information.

The rest of this paper is organized as follows. Section II
dives deeper into the clustering algorithms used for creating
load profiles and methodologies to classify them. Section III
details our solution approach and Section IV provides the
results. Lastly, in Section V we conclude our research and
give indications for future research.

II. LITERATURE REVIEW

The idea of using demand response models and load-
based tariff setting is becoming increasingly important with
a more widespread AMI. One paper used clusters of AMI
time series to develop optimized pricing schemes [3]. Another
one also focused on creating better tariffs using load profile
information [11]. Other papers that have focused on these
types of applications can be found in [12]–[14]. Crucial in
the development of these models is the generation of the load
profiles.

The load classification cycle consists of four phases: (i)
data gathering, (ii) pre-clustering, (iii) clustering and (iv) post-
clustering [5]. The first phase is focused on gathering and
cleaning the data. In the second phase, the data is processed
so as to prepare it for clustering, resulting in the generation of
the input data set for the clustering algorithm. Then the actual
clustering is performed and the centroids are formulated to
represent them as Typical Daily Profiles (TDP). Finally, in
the post-clustering phase, meaning is given to the generated
load profiles by identifying the relevant customer attributes
that define them. This is an important step in tariff setting as
it allows new customers to be easily assigned to their relevant
profile.

The clustering phase of this cycle has gained a significant
amount of attention in recent years and different method-
ologies have arisen to tackle this problem. A recent survey
identified five different clustering methods for load profiling:
partitioning based methods, hierarchical methods, density-
based methods, grid-based methods and model-based meth-
ods [6]. The most commonly used clustering techniques in
this context are k-means [15], fuzzy c-means [16] and Self-
Organizing Maps [17], [18]. [5] also adds the Follow The
Leader [11] and Probabilistic Neural Networks [19] to the
methodologies. Recent studies have shown the merits of using
other techniques as well. In [4], [20], spectral clustering using
weighted kernel principal component analysis was used and
Tsekouras [21] employed a two-stage approach.

With regard to assigning attributes to the load profiles,
the paper by Figueiredo [7] provides the first insights. In
this paper, commercial indices, combined with load shape
indices are used to predict the representative load classes.
Here it became clear that the Load Factor index and the Night
Impact index were most crucial in determining the correct load

profiles. However, this paper did not include any information
that could be collected freely outside of the organization. [14]
also stressed the post-clustering phase but again neglected
to include external information, be it freely or commercially
available, for the attribution to the load profiles.

III. ALGORITHMIC FRAMEWORK

Our proposed framework addresses the need of utility
companies for a clear segmentation of customers, for whom
no individual-level consumption patterns are readily available,
by combining both supervised and unsupervised techniques.
Figure 1 details our procedure. First, we need to define the
different segments the company wishes to focus their incentive
programs on. We do this by looking for customers with
similar consumption behavior. The rationale is that consumers
with similar behavior will likely be more receptive to the
same kinds of incentives. To detect these different segements,
we aggregate similar load patterns into clusters of similar
consumption behavior. Once we have identified these clusters,
the next phase is to assign new customers to these pre-existing
clusters. This is not a trivial task as we typically do not have
consumption information on these new customers. Therefore,
we first identify the relationship between the load profile and
the company’s internal database without using smart meter
data. This is done by predicting the probability of belonging
to a certain cluster by means of classification algorithms. As
typically the internal database of a company alone does not
provide adequate predictions, we extend this internal database
with government data, open data and commercially available
data of the customer. The result of the classification is a
model that relates the internal and external data to certain
load profiles. Afterwards, when a new consumer applies to
the provider, we can use these relationships to calculate the
probability for this consumer to belong to a specific load
profile. The following sections will dive deeper into every
single pillar and discuss every step in the process more
thoroughly.

Fig. 1. An overview of the proposed methodology

A. Load Profiling
The initial pillar is a comprehensive load profiling step.

This step aims to provide accurate clusters of consumers with
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similar consumption patterns. Formally, using the notation of
[11] we have a set L = {lm,m = 1, ...,M} of load diagrams
for M customers that we wish to partition into K consumer
clusters. For each of these clusters, we will then determine
the representative load profile T = {tk, k = 1, ...,K}. We
follow the procedure introduced by Zhou [6] to determine
our representative profiles. This implies we first correct our
data and delete any possible outliers. Next, we aggregate
our full dataset to an average daily 15 minute pattern (96
measurements per customer). This new and shorter time series
is then rescaled so we confine ourselves to analyzing the
shape of the load curve and not the absolute value of the
load over the period. This approach of using Typical Daily
Profiles is a common method within the industry and in
literature to reduce data dimensionality, problem complexity
and absolute load impact. This is achieved by first taking
the mean values for any given quarter of an hour for every
customer followed by rescaling every time series objects in the
aim to only focus on consumption patterns and not absolute
load. Time series consisiting only of 0-measurements are then
removed. Afterwards, these daily patterns per customer are
used as the basis for a clustering algorithm in order to attain
the load profiles from the dataset. In [6] several clustering
methodologies for load classification are proposed. With re-
gard to choosing a clustering algorithm, literature suggests
that Self Organizing Maps [22], k-means based approaches
[23] or a combination of both [7] perform well. However,
recent research [20], [24] suggests that a Spectral Clustering
Algorithm (SCA) using weighted kernel principal component
analysis (WKPCA) performs better for this type of application.
To this end, we will utilize a spectral clustering approach in our
methodology as well and we will compare it with a classical
k-means clustering. However, unlike their methodology, we
use the observed daily load profiles rather than model-based
estimates. For a summary and formal definition of the SCA
with WKPCA, we refer the reader to [4], [20].

This method offers two main advantages: (i) it is mainly
based on the similarity matrix of the dataset where it needs
the pairwise similarities of the time series, as a result it
ignores the high-dimensionality problem; (ii) it can be used
to cluster time series with arbitrary length with the con-
dition that the similarity measures between them are well
defined. The spectral clustering algorithm provides a powerful
unsupervised tool to identify similar patterns across time-
series data. Spectral clustering makes use of the eigenvalues
of the similarity matrix of the time series data in order to
achieve a dimension reduction (In essence, it is equivalent
to running a linear principal component analysis in a high
dimensional kernel space). Clustering is performed on the
modified data by comparing pairwise similarities within this
high-dimensional space. The spectral clustering algorithm has
its roots in graph partitioning theory and it operates without
making specific assumptions on the form of the clusters. This
makes it specifically robust and also leads to good results,
as the clustering itself happens in a high-dimensional space
(like in the context of Support Vector Machines) and the
clusters become linearly separable. It is argued that spectral
clustering is, under certain conditions, equivalent to kernel-

1: procedure LOAD PROFILING
2: Make n time series objects:
3: Remove outliers and aggregate to daily patterns
4: Check data quality
5: Filter time series to remove missing values
6: Normalize Time Series:
7: Select Time Series (EANS) to be clustered
8: Perform Spectral Clustering:
9: for ClusterSize = 2 to 10 do

10: Execute Spectral Clustering on selected Time Series
11: Calculate cluster membership
12: ct ← total number of clusters
13: for k = 1 to K do
14: kcounti ← count of cluster members
15: end for
16: Calculate Davis-Bouldin index
17: Calculate Dunn index
18: end for
19: ClusterSizeopt ← best avg rank of Dunn and D-B
20: Determine Representative Load Profile T
21: Export optimal clusters
22: end procedure

Fig. 2. Load Profiling Methodology

based k-means, which is a k-means clustering on a kernel-
based PCA analysis [20].

One drawback of SCA is that the optimal number of clusters
still has to be determined a priori. To analyze which number is
optimal for our dataset, we use two internal validity constructs,
the Davies-Bouldin-index [25] and the Dunn-index [26]. These
two criteria aim to maximize internal cluster consistency and
minimize overlap. We vary K from 2 to 10 for our algorithm,
as most studies indicate that there are between 4-10 clusters
[17], [20]. Algorithm 1 outlines this procedure. After we run
the procedure, we have an optimal amount of clusters with
their respective Daily Load Profiles. Figure 2 summarizes our
approach.

B. Data Enrichment

In our second component we aim to enrich our internal
customer data. This is a necessary step as our internal data
set only contains contractual information on our customers
as well as information on their credit-worthiness, their total
consumption over the year and the commercial (NACE) code.
Survey data was not available. Therefore it was necessary
to extend our basetable with more elaborate information on
the individuals themselves as well as information on their
surroundings. To this end, we mine publicly or commercially
available data on the customers, given their exact location,
registration number, company name, etc. We collect this data
in order to get a descriptive and complete profile of the end-
users. To link our customers to open data, we follow five steps.

Locate:
a possible data source is identified
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TABLE I
INTERNAL DATA TABLE

Variable Source Region Completeness

Operational Segmentation internal Belgium all
Volume Segmentation internal Belgium all

AccountClass internal Belgium all
Name internal Belgium all

NACECode internal Belgium all
Creditworthiness internal Belgium all

PayMethod internal Belgium all
EnergyManager internal Belgium all

hasSmartTermostat internal Belgium all
hasSmartEnergyBox internal Belgium all

EAN internal Belgium all
Address internal Belgium all

PostalCode internal Belgium all
internalDivision internal Belgium all
hasPhotoVoltaic internal Belgium all

GridOperator internal Belgium all
ContractType internal Belgium all

MeterType internal Belgium all
GasConsumption internal Belgium all

TABLE II
COMMERCIAL DATA TABLE

Variable Source Region Completeness

Revenues Graydon Belgium 5290
Nbr of Employees Graydon Belgium 5290

Revenue / Nbr of Employees Graydon Belgium 5290

Evaluate:
the available variables are evaluated on their ability
to describe the entity to be researched (a customer)
or the environment in which the entity operates

Export:
the variables are exported or mined according to best
practice techniques

Clean:
the data is cleaned of missing values and it is checked
for completeness

Link:
the linking variable is identified and the newly ac-
quired data is integrated into the full database

The result of this process is an extended database that
includes, besides the internal company data, information on
their municipality, commercially available company informa-
tion and information their individual lot and building sizes.
The commercial data is linked with the internal data by means
of their VAT number. The information on the municipality is
linked by the postal code and the cartographic data is linked
through the exact address. An overview of these different data
sources and their completeness level can be found in Tables
I, II, III and IV.

TABLE III
MUNICIPAL DATA TABLE

Variable Source Region Completeness

Net total taxable income BEstat Belgium 5653
Average net taxable income BEstat Belgium 5653
Median net taxable income BEstat Belgium 5653

Income Asymmetry BEstat Belgium 5653
Percentage Foreigners BEstat Belgium 5653

Birth Rate BEstat Flanders 3939
Death Rate BEstat Flanders 3939

Residents in 5-year age-groups BEstat Flanders 5653
Crime Rate FedPol Flanders 3836

Cultural Events UiT-DB Belgium 5653

TABLE IV
CARTOGRAPHIC DATA TABLE

Variable Source Region Completeness

Lot Size CADgis Belgium 3070
# Buildings CADgis Belgium 3068

Building Size CADgis Belgium 3070
Useable Area CADgis Belgium 3070

C. Load Profile Prediction

The third and final pillar is combining the newly mined data
with the results from the ’load profiling’ as performed in step
one. The main goal of this module is to ensure that we can
identify a set of rules with which we can properly attribute
a new customer, or a customer for which his Smart Meter-
load profile is not readily available, to his specific segment.
Using classification algorithms we can identify the relation
between a customer’s attributes and his load profile. Bearing
in mind that our dependent variable is not binary in nature
(unless we have a two-cluster solution), we will always have
to either use a capable model or Round Robin Classification
[27] also often called one-vs-all classification, which can be
easily described as turning each level (n) of your dependent
variable into a binary classifier and running the classification
algorithm n times. The accuracy of these models is evaluated
by looking at their individual accuracies. This makes it easy
to compare different classification algorithms and also helps
us in iteratively adding/removing variables from the extended
database in order to maximize predictive performance. We
focused on two popular and well-performing algorithms, as
verified in numerous studies, to assess the performance of our
model [9], [10], [28], [29]. Both algorithms use an ensemble
of models to come up with their predictions.

1) Random Forests: Random Forests (RF) is an extension
of decision tree algorithms [10]. Rather than estimating a
single decision tree using all data to predict the class member-
ships, RF creates a number of different decision trees that are
combined into one single estimate by using majority voting.
The different trees are created by taking random samples on
both the observations and the predictors. The result is that RF
is very robust to outliers, overfitting and noise in the data.
Furthermore, it is a computationally efficient methodology as
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all trees can be estimated in parallel and as the sampling
reduces the dimensions of the problem.

2) Stochastic Boosting: The Stochastic Boosting (SB) al-
gorithm has the reputation of the best off-the-shelf classifier in
the world and is an efficient and simple approach for building
classification models [9]. Similar to RF, it creates multiple
models for a given dataset. However, unlike RF, it does not
create the models in parallel. Instead, it uses a sequential ap-
proach to create the classifiers. After every iteration the model
checks which observations it was able to predict accurately.
Those that were difficult to predict, get a higher weight (i.e.,
they are ‘boosted’) in the next iteration. This pushes the model
to learn different types of rules, also for those observations
that are not so easy to predict accurately. Boosting algorithms
require some tuning and can fail to perform well if there is
insufficient data due to sensitivity to noise. As a meta-learner
algorithm, Boosting is capable to employ any simple learning
algorithm to create multiple models.

D. Performance Evaluation
In order to assess the performance of our models, we opt

to use the Area Under the receiver operator Curve (AUC)
measure [30]. The rationale for this is that it is a more objective
measure to evaluate the performance of a predictive model than
accuracy (Percentage Correctly Classified, PCC). The reason
is that the accuracy of a model crucially depends on the cut-
off value that is applied to the posterior probabilities [31]. The
AUC measure overcomes this by looking at all possible cut-
off values. Theoretically it is defined in Equation 1 with TP as
the True Positives, FN as the False Negatives, FP as the False
Positives, TN as the True Negatives, P as the Positives and N
as the Negatives. It is the area under the Receiver Operator
Curve (ROC). This curve plots for every cut-off value between
0 and 1 the True Positive Rate (TP / P) and the False Positive
Rate (FP / N). The area under this curve then approximates
how well the model performs across all cut-off values. As
both the True Positive Rate and the False Positive Rate are
between 0 and 1, the maximum value for the AUC is 1. A
random model should have an AUC value of 0.5 so it’s value
is only meaningful between 0.5 and 1. A higher score implies
a higher True Positive Rate and therefore a better model.

AUC =

∫ 1

0

TP

TP + FN
d

FP

FP + TN
=

∫ 1

0

TP

P
d
FP

N
(1)

To ensure we are not biased by our chosen training set,
we perform five times two-fold crossvalidation (5x2 cv) in
order to assess our final performance [32]. We assign the data
randomly to either the training or validation set and perform
the algorithm. At every replication we use the same split
between training and validation. The reported AUCs are the
averages across these models.

IV. COMPUTATIONAL RESULTS ON BELGIAN
CONSUMPTION DATA

A. Implementation Details
All of our results were obtained using R v3.1.0 on a 3.2

GHz CPU running Windows with 32 GB of RAM. Our

dataset contains 6975 customers of an energy provider in
Belgium. For every customer we were given two years of
smart meter measurements in 15-minute intervals. This leaves
us with 70040 measurements for every customer. After our
pre-processing stage, we ended up with 3068 customers for
whom all relevant information was available. For our spectral
clustering, we employed the kernlab package by [33]. We used
the standard parameters with the exception of the number of
random starts. This was experimentally changed to 1000 to
generate the best results. We used Euclidean distances for our
similarity measure. For our classification algorithms, we used
the ada R package by [34] and the RandomForest package
from [35]. In both cases we employed the standard parameters
as suggested by the authors.

B. Cluster Quality

Table V reports the Dunn and Davis-Bouldin indices across
the different cluster sizes. These indices are the average results
after running the clustering 50 times. We can see that both
indices find an optimum of 2 clusters for our SCA as we
seek a minimum index for Davies-Bouldin and a maximum
for Dunn.

However, in the two-cluster solution, the second cluster
contains less than 0.1 % of the total observations. This cluster
represents companies that are open all day, which heavily
skews the results. We obtained similar results when looking
at the three-cluster solution. In this case, one group contained
over 80 % of the observations. Looking at our indices, It is
noteworthy that for six clusters the indices reach values close
to the optimum, indicating that a selection of six clusters could
also be viable. When looking at the representative load profiles
for the six cluster solutions, they are also easily interpretable.
Therefore, we ultimately settled for the six cluster solutions.
Theoretically, we could further break down the biggest cluster
in this solution into smaller sub-clusters as we did find some
meaningful ones. However, we chose to follow the results
of our indices to stop at our optimal number. Table VII
shows the number of customers per cluster and their respective
percentage over the population. The robustness of this solution
was also checked by making 50 bootstraps of the original data.
In 47 cases the same results were found. In the other 3, the
results were only slightly different. We employed the same
methodology to compare our results with k-means. There we
found an optimal cluster size of two using our indices as can
be seen in Table VI. Again, these two clusters provided little to
no meaning. Furthermore, it proved very difficult to detect the
amount of clusters that represented meaningful load profiles
using this approach.

Looking at Figure 3 you can see the TDP for all clusters
using the SCA. We provide both the representative profile and
the rolling box plot around our profile. This enables us to
assess the spread around our centroid.. We did not plot all
time series as this would give graphs that are too difficult
to interpret. There are clear distinctions between each of the
profiles that provide clearly separated segments. Load Profile
1 clearly contains companies that are less active during the day
and start to consume energy very early in the morning. The
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TABLE V
PERFORMANCE FOR SPECTRAL CLUSTERING

2 3 4 5 6 7 8 9 10

Dunn 1.32 0.91 0.38 0.29 0.65 0.21 0.31 0.35 0.36
Davies-Bouldin 1.45 2.01 3.61 4.52 1.88 3.10 2.54 2.49 2.51

TABLE VI
PERFORMANCE FOR K-MEANS CLUSTERING

2 3 4 5 6 7 8 9 10

Dunn 1.55 1.20 1.18 0.72 0.68 0.61 0.58 0.63 0.55
Davies-Bouldin 1.10 1.19 1.24 1.39 1.48 1.61 1.64 1.59 1.60

TABLE VII
NUMBER OF CUSTOMERS PER CLUSTER

C 1 C 2 C 3 C 4 C 5 C 6

Amount 83 428 1828 81 460 188

% 2.7% 13.9% 59.6% 2.6% 15.0% 6.1%

TABLE VIII
CROSSVALIDATED AUCS WITH SCA

Used Data SB RF

Internal 0.754 0.733

Internal + Commercial 0.767 0.765
Internal + Mun 0.747 0.696
Internal + Location 0.762 0.743

Internal + Commercial + Mun 0.754 0.732
Internal + Commercial + Location 0.778 0.763
Internal + Location + Mun 0.748 0.728

Internal + Commercial + Mun + Location 0.765 0.740

Commercial + Location + Mun 0.687 0.649
Commercial + Location 0.699 0.639

TABLE IX
CROSSVALIDATED AUCS WITH K-MEANS

Used Data SB RF

Internal 0.730 0.693

Internal + Commercial 0.734 0.720
Internal + Mun 0.705 0.663
Internal + Location 0.733 0.704

Internal + Commercial + Mun 0.720 0.682
Internal + Commercial + Location 0.737 0.730
Internal + Location + Mun 0.748 0.728

Internal + Commercial + Mun + Location 0.712 0.693

Commercial + Location + Mun 0.641 0.610
Commercial + Location 0.640 0.595

third profile is a company mainly active during typical business
hours. When compared to the fifth profile there is a dip during
lunch times and a quicker descent in the evening. Overall these
clusters represent interesting segments for incentive schemes.

C. Basic Model

Table VIII reports the weighted crossvalidated AUCs for
all models. The weights are calculated based on the size of
the cluster relative to the total amount of observations. In our
benchmark model we only use the internal company data to
classify the customers to their respective load profiles. We can
see that our benchmark model already performs quite well.
This implies that the contractual and basic customer data alone
is already able to predict with relative good accuracy what kind
of consumption pattern a customer will have. If we look at the
variable importances of this model in Figure 4a, it is clear that
the commercial codes have the biggest influence on the model
performance. This is in line with the results of Figueiredo
[7] that also identified commercial codes as a big factor. It
is noteworthy that credit risk is another important factor for
identifying the consumption behavior as well as the area in
which you are operating. This area is identified through the
different electricity grid variables.

D. Added Value of Commercial Data

Looking at the addition of the commercial data, we can see
that this has a positive effect on the predictive performance.
This commercial data represents the number of employees and
the total turnover of the company. These give an indication of
the size of the company and it makes sense that this can help
in predicting the consumption behavior. The addition of this
data to the internal dataset is a logical extension and should
be considered as extended internal information. In practice, it
should be no problem to gather this data from the company
itself, thereby eliminating the search procedure.

E. Added Value of Municipal Data

The municipal data reduces the predictive power rather than
improving it. We see this negative effect every time we use
it in combination with other data sources and across the dif-
ferent algorithms. Only in combination with the cartographic
variables, the effect is not strongly negative. Looking at the
variable importances of the open data model including munic-
ipal variables in Figure 4b, it is obvious they are dominating
the other variables. As they have a negative impact on total
performance, this shows that it is not wise to include them
in the final model. The reason for this negative impact on
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(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

(d) Cluster 4 (e) Cluster 5 (f) Cluster 6

Fig. 3. Typical Load Profiles for all clusters

# Predictor

1 NACE = 43320

2 NACE = 45113

3 Payer Risk Grade Bad

4 NACE = 25620

5 NACE = 56101

6 Operational Segmentation

7 NACE = 47716

8 PrivateGridOperator

9 IndustrialGridOperator

10 Volume Segmentation

(a) Internal Data

# Predictor

1 TaxableNetIncome

2 Deaths

3 % residents in 25-29

4 % residents in 0-4

5 % residents in 80-84

6 % residents in 15-19

7 % residents in 10-14

8 % residents in 70-74

9 % residents in 60-64

10 % residents in 55-59

(b) Open data

# Predictor

1 LotSize

2 Turnover

3 Ratio

4 usableArea

5 NrOfEmployees

6 buildingSize

(c) Open data (No Municipal)

# Predictor

1 usableArea

2 Turnover

3 NACE = 56101

4 Ratio

5 LotSize

6 buildingSize

7 Grid Operator

8 numberOfHardLines

9 NACE = 68321

10 Volume Segmentation

(d) Final Model

Fig. 4. Top 10 Predictors for the different models

the total model performance can likely be found in the lack
of differentiating power. As these data can be the same for
any kind of company in the same area, they cannot easily
discriminate between them.

F. Added Value of Cartographic Data

The value of the cartographic data is very good. All models
including these data, except when combined with municipal
data, perform better than those without. This seems to make
sense as the area that a company uses as well as their
number of buildings and the building size heavily impact
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Fig. 5. Predictive Power of the different models

energy consumption. We can see this again when looking to
the variable importances. Every time the cartographic data is
included, they are among the top predictors, except when they
are dominated by the municipal variables.

G. Model Value without Internal Data

We also tested whether it could be possible to predict
the consumption patterns when no information with regard
to the consumers is available from the company itself. The
results indicate that when only relying on open data, the
predictive power of the model is reduced. However, when
removing the municipal data, we can see that the SB algorithm
is able to produce an AUC of 0.7. This implies that the
open data model already performs better in determining the
correct consumption pattern than a random model. Even when
no contractual or commercial code information is available,
energy producers can already assign customers to pre-made
load profiles. The combination of turnover and lot size are the
best predictors in this case as seen in Figure 4c.

H. Final Model

The best performing model is the one that includes all
internal data as well as commercial and cartographic data.
This model outperforms all others and is the best model for
assigning new customers to a load profile. With an AUC of
0.778, it is highly effective. When running this model, the most
important explanatory variables are the commercial codes in
combination with the usable area, lot size, building size and
turnover of the company. This can be observed in Figure 4d.
Finally, Figure 5 compares the performance of the different
models and highlights the strength of the chosen model.

We also replaced our spectral clusters by the k-means
clusters and ran our AUC analysis again. As can be seen
from Table IX the results are comparable to those with SCA,
although the SCA clusters generate a higher AUC on all
models. This indicates applying k-means is possible, but it
comes at a cost. The advantage of k-means is that it is more
scalable. However, it deteriorates the interpretability of the
profiles and it is more difficult to derive meaningful links with
other variables.

V. CONCLUSION

We have shown that it is not necessary to have smart meter
data for all your customers in order to classify them into a
specific load profile. Using internal company data alone, our
model is able to accurately predict the load profiles. This is
interesting in the design of incentive schemes for different
types of customers. As smart meter data is not available for
all customers, this enables a company to propose adequate
schemes. Furthermore, extending internal company data with
open data on the consumers increases the predictive perfor-
mance of these consumption patterns. Especially commercial
data about these companies as well as cartographic data
are effective in improving these models. Our analysis also
shows that only having this information, without any other
internal data, is enough to provide a basic model that classifies
customers into their respective patterns. Having the ability to
classify customers without smart meters into their likely load
profiles is not only interesting from a customer relationship
management point of view, it is also meaningful for the daily
operations of electricity producers. Being able to predict the
consumption behavior of the different customers will enable
the producers to better balance the electricity grid.

Toward future research, it could be interesting to assess
the value of weekly or monthly profiles rather than using the
typically used TDP for generating our load profile clusters.
Furthermore, it would be meaningful to assess how the top
predictors change when looking at seasonal TDPs. Especially
in corporate environments, these profiles could highlight extra
information. However, processing the increased amount of
measurements is currently difficult as it requires very high
computation times and memory consumption. Finding efficient
algorithms and structures for doing this should be beneficial.
A first paper with these types of profiles was undertaken by
Mutanen [14]. However, no link to any external data was
included here.
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