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Abstract

This paper seeks to assess the added value of a Facebook user’s friends data in event attendance

prediction over and above user data. For this purpose we gathered data of users that have liked

an anonymous European soccer team on Facebook. In addition we obtained data from all their

friends. In order to assess the added value of friends data we have built two models for five different

algorithms (Logistic Regression, Random Forest, Adaboost, Neural Networks and Naive Bayes).

The baseline model contained only user data and the augmented model contained both user and

friends data. We employed five times two-fold cross-validation and the Wilcoxon signed rank test to

validate our findings. The results suggest that the inclusion of friends data in our predictive model

increases the area under the receiver operating characteristic curve (AUC). Out of five algorithms,

the increase is significant for three algorithms, marginally significant for one algorithm, and not

significant for one algorithm. The increase in AUC ranged from 0.21 %-points to 0.82 %-points.

The analyses show that a top predictor is the number of friends that are attending the focal event.

To the best of our knowledge this is the first study that evaluates the added value of friends network

data over and above user data in event attendance prediction on Facebook. These findings clearly

indicate that including network data in event prediction models is a viable strategy for improving

model performance.
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1. Introduction

Facebook is a large-scale social media platform with 1.55 billion monthly active users and 894

million daily active users [32] and has grown to the point of becoming an important channel for

social contact [30, 64] and product promotion [15, 11]. Among other things, it enables businesses

to schedule meetings and gatherings using a functionality called Facebook Events [33]. With

Facebook Events promoters can manage event participants and notify participants’ friends [33].

The downside of this functionality’s popularity is that many companies are using it and hence

there are a lot of co-occurring events [5]. In order to make a user’s Facebook experience more

enjoyable and to avoid information overload, Facebook predicts whether or not the user will attend

the event. It logically follows then, that a very important task is to try and make those predictions

as accurate as possible.

While there is a considerable body of research on event modeling in other fields and networks

[23, 51, 67], little research has been done on Facebook Events specifically, despite the platforms’

aforementioned size and success. A very common and important research question in event pre-

dictions pertains to the importance of specific sets of predictors. If a set of predictors does not

improve predictive performance it should be removed from the model so as to prevent from slowing

down the modeling process. In the case of Facebook data, a meaningful question is whether friends

data should be included in the model. If a typical user has 300 friends, and we have 1,000 users

in our sample, including friends data would imply analyzing an additional 300,000 users. If these

data do not improve the predictive model significantly, adding them would imply an unnecessary

lag in the modeling process.

This paper seeks to fill this gap in literature by studying the added value of friends data over

and above user data in event prediction on Facebook. We focus on predicting whether a soccer fan

will attend a given event or not. For this purpose we developed a Facebook application to extract

a user’s data along with a user’s friends data. In total 5,010 users and 1,102,573 friends authorized

our application to collect their relevant data. To investigate the added value of friends data we build

and compare two models. The first one includes only user data and the second one includes both

user data and friends data . The difference in performance between both models yields the added

value of friends data. If the performance increase is significant, friends data should be incorporated

in future models. If not, it should be excluded for the sake of parsimony and execution speed.
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Furthermore, we benchmark these two models for five state-of-the-art classification algorithms

namely Logistic Regression, Random Forest, Adaboost, Neural Networks and Naive Bayes.

In the remainder of this article we first provide an overview of extant literature. Second, we

provide details on the methodology. Third, we elaborate on our findings and their implications.

Finally, we discuss limitations and avenues for future research.

2. Literature overview

The addition of social network information has proven to achieve good performance in several

applications (other than event prediction). On Facebook, examples can be found in the field of

activities [86], users [19], movies [74] and interests [42]. On Twitter, network information has

proven to be useful in predicting user behavior [71] and tweet popularity [46, 79]. On other social

network sites, including social relationship data has improved results in peer recommendations

[61, 85]. Despite the importance of network data in social media prediction, literature on event

attendance prediction remains scarce as discussed in the next paragraph.

Literature on event prediction can be classified according to the data that is used in the model.

In this typology there are three classes: predictive models that are enriched with (1) user data [e.g.,

67], (2) network data [e.g., 80], or (3) both user and network data [e.g., 47]. User data are defined as

specific profile characteristics that represent the preferences of the user. Examples are the interests

of the user [20], demographics [72] and past event-history [87]. Network data are defined as data

that contain information about the user’s social network. Examples are the number of peers that

are attending the event [63], and event preferences of their friends [52].

Table 1 provides a literature review on event prediction literature with a focus on data sources

and platforms. It is clear that, to the best of our knowledge, our study is the only one that evaluates

the added value of network data over and above user data on Facebook. Even more so, Table 1

indicates that the added value of network data has not been evaluated on other platforms neither.

The study of Zhang et al. [87] is of special interest as it focuses on user and network data from

Facebook, just as our study.

In their research, three large groups of event predictors and corresponding approaches are

proposed. First, in a similarity-based approach (SBA) they use event profile data (e.g., topic,

location) and user profile data (e.g., interests, activity history) to compute similarities. Second,
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in an approach that they call the relationship-based approach (RBA), they include network data

such as whether or not friends will attend the event. Third, in their history-based approach (HBA)

they add users’ historic event attendances. The authors subsequently propose a hybrid approach

(SRH), which is a combination of the three other approaches and data sources. Their research

concludes that indeed the combination of all three data sources (SRH) yields the most precise and

accurate results, followed by RBA, SBA and HBA.

Table 1: Overview of events literature

Study Case Facebook

data

User

data

Network

data

Added

value

network

Mynatt and Tullio [68] Company meetings X

Horvitz et al. [47] Company meetings X X

Lovett et al. [63] Company meetings X

Tullio and Mynatt [80] Company meetings X

Daly and Geyer [23] Company meetings X X

Pessemier et al. [72] Cultural activities X X

Coppens et al. [20] Cultural activities X X

Lee [58] Cultural activities X X

Kayaalp et al. [51] Concerts X X

Minkov et al. [67] Academic events X

Klamma et al. [52] Academic events X

Zhang et al. [87] Facebook events and X X X

Academic events

Our study Facebook X X X X

Just as in the other studies in Table 1, Zhang et al. [87] do not assess the added value of

network data over and above user data. They only investigate the difference in precision between

the hybrid approach and the other methods. They have not made pairwise comparisons between

the three different data sources by solely comparing the combined sources with the individual

sources. Their results suggests that the SRH approach significantly outperforms the three other

approaches. For the three other models, their study only states that they perform better than
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a random model, thereby neglecting to investigate whether the models are significantly different

from one another. With this approach, they are also unable to detect whether the increase in

performance is due to network data or not. Regarding these results, it is clear that their study

does not incorporate a comprehensive assessment of the added value of friends data. Furthermore,

their research doesn’t disclose which variables should be included or not in order to make predictive

models as efficient as possible. Such assessment is necessary because including friends data implies

a certain computational cost. From that perspective, one could argue that including friends data

is only reasonable if the results improve significantly.

To fill this gap in literature, this study focuses on one such pairwise comparison: it will assess

the extra value of friends data over and above user profile data. By doing so, we can precisely

isolate the impact of our network variables. To make the comparison we build two models, a first

one -the baseline model- containing user predictors and a second one -the augmented model- with

network predictors in addition to the user predictors1. Examples of user variables are the number

of groups, posts, events and photos. Network variables are operationalized as the number and

percentage of friends that are attending a certain event. Furthermore, we assess several algorithms

to determine if the increase in prediction performance is consistent.

We have three hypotheses about why network variables might improve event recommendations.

First, the theory of homophily [65, 82, 3], also called endogenous group formation [44], states that

like-minded people group together and often share the same tastes and opinions [41, 78, 84]. Second,

and closely related to homophily, is the idea of social influence [35] and selection [65]. The former

states that persons tend to follow the decisions of their peers [21]. The latter states that people

mostly select friends who are similar [34]. Third, network variables capture the concept of trust.

Trust-based theories state that friends’ actions will be more easily followed and hence be more

accurate if they are sourced from a trustworthy connection or friend. This is especially important

in the case of events because trust and acceptance are critical factors for actual event attendance

[48, 59, 70]. In addition, Facebook friends are often real-life friends [30] and can therefore be

deemed trustworthy ties.

Various studies confirm the result that adding social relationships increases the performance of

1In the remainder of this paper, we will always refer to the model with only user data as the baseline model and

to the model with user and friends data as the augmented model.

5



predictive models in Facebook applications relating to romantic partnership [6] and link prediction

[50]. Chang and Sun [18] also found evidence that network variables play an important role in

location check-ins. Using Facebook data, they conclude that previous check-in behavior of the user

and the check-ins of friends are the most relevant predictors of check-in behavior. Thus, if a friend

is attending a Facebook Event, a user may be more inclined to attend as well. It is clear that from

the theories of homophily, social influence and selection that the probability of adopting a given

behavior rises when others in one’s network have already adopted that behavior [2, 4, 21].

To summarize, we found strong indications in extant literature that the augmentation of user

data with network data can improve the predictive power of our model. To the best of our

knowledge this is the first study to look into this issue for the social network site Facebook. In the

next section of this paper we will elaborate on our methodology.

3. Methodology

3.1. Data

In order to extract data from Facebook, we made a Facebook application for a European soccer

team. To stimulate usage of our application we offered a prize (i.e., a signed shirt of a famous soccer

player) to the participants and asked three questions to determine the winner. The application was

advertised several times on the Facebook fan page of the soccer team. In addition, the application

was added to the main page tabs for added visibility. Application users were presented with an

authorization box in which they had to give their permission before the data were gathered from

their profile. The data were collected between May 7, 2014 and June 9, 2014. In total we collected

5,315 event observations (2,368 unique events) from 978 users. We also gathered data of 194,639

friends, which are used for the creation of network predictors. The response variable in our models

is binary, with the value 1 if users indicated that they were attending and 0 otherwise. Of all our

event observations attendance is 78.2%.

3.2. Predictors

The user-related variables are summarized in Table 2. The ‘Like’ variables in our study only

relate to likes generated by users. ‘Likes’ are also only available for a page, band, app, or leisure

activity. In the photo and video variables the affix ‘created’ points out that the photo or video was

uploaded, or created and immediately uploaded with the Facebook app. Tags in photos refer to
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tags of the user himself/herself. The variable ‘username’ captures if a user has upgraded his/her

username to an alphabetic identifier from the standard numeric identifier. Due to regulations on

Facebook, we could only gather the twenty-five last albums, photos, videos, links, status updates,

notes and check-ins. In order to alleviate this restraint, we calculated the frequency by time as

to no users in our database reached this restriction. For the last seven days, we computed the

frequency of status updates, photo and link uploads, for the last four months album uploads and

check-ins were computed, and for the last year notes and video uploads were computed.

Table 2: Overview of predictors

Variable category Variable

Demographic Age

and identification IND(gender)

variables IND(email)

IND(website)

Geographical IND(hometown)

variables IND(location)

Professional/ COUNT(languages)

Educational COUNT(work)

variables COUNT(educations)

IND(education type)

Social COUNT(family)

variables IND(sexual orientation)

IND(relationship status)

COUNT(OF 23 family relationship types) (e.g., aunt)

COUNT(Friend connections)

COUNT(Groups)

Personal COUNT(favorite teams)

variables COUNT(sports)

COUNT(television)

COUNT(music)

COUNT(movies)

COUNT(books)

COUNT(activities)

COUNT(inspirational people)

COUNT(interests)
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COUNT(OF 10 television categories) (e.g., Show)

COUNT(activity category)

IND(OF 14 interests) (e.g., Design)

IND(OF 23 sports) (e.g., Fitness)

IND(bio)

IND(quotes)

IND(political)

IND(religion)

General Facebook Length Facebook membership

Account variables Recency last update=REC(profile update created)

MEAN(album privacy)

Profile completeness=SUM(IND(37 profile variables))

IND(username)

Time ratio=SDIET(all actions)/MIET(all actions)

Likes COUNT(OF 188 like categories) (e.g., Musician/band)

COUNT(likes)

REC/MIET/SDIET(like created)

COUNT(posts likes)

Statuses COUNT(statuses)

REC/MIET/SDIET(status updated)

Photos COUNT(photos)

REC/MIET/SDIET(photo created)

Videos COUNT(videos)

REC/MIET/SDIET(video created)

Albums COUNT(albums)

REC/MIET/SDIET(album created)

Events COUNT(events)

MIET/SDIET(event created)

IND(event time == start day)

IND(event time == end day)

IND(event time == month)

IND(event time == season)

IND(event time == year)

IND(event time == weekend)

IND(event location)

LENGTH(event time)

Links COUNT(links)
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REC/MIET/SDIET(link created)

Check-ins COUNT(check-ins)

REC/MIET/SDIET(check-in created)

IND(check in app)

Notes COUNT(notes)

REC/MIET/SDIET(note created)

Games COUNT(games)

REC/MIET/SDIET(game created)

Tags REC/MIET/SDIET(photo user tags)

COUNT(video user tags)

COUNT(photo user tags)

COUNT(check-in user tags)

REC/MIET/SDIET(video user tags)

Comments made REC/MIET/SDIET(photos/albums/statuses/links/check-ins com-

ments)

COUNT(photos/albums/statuses/links/check-ins comments)

Comments received REC/MIET/SDIET(photos/albums/statuses/links/check-ins com-

ments received)

COUNT(photos/albums/statuses/links/check-ins comments received)

With IND: indicator, COUNT: frequency, REC: recency, MIET: mean inter-event time, SDIET:

standard deviation inter-event time, LENGTH: length of the time interval. MIET is the mean

time that passes between two subsequent events (e.g., album uploads). SDIET is defined as the

standard deviation of the time between two subsequent events.

Within our user variables, we are particularly interested in event-related user variables. The

majority of the user-event variables are calculated as time indicator variables (see Table 2 Section

Events). These variables resolve to 1 if the event took place at a certain time and 0 otherwise.

Applying this logic we computed dummies for the day of the week (for both start day and end day

of the event), the weekend, the month, and the season. Other event variables such as the duration

and location were also added. We denote that we didn’t include dummies for the type of event,

since our database mainly contains soccer events. Other popular events were related to parties and

festivals. In total we calculated 540 user variables for our first model.

In order to create our second model, we augmented the first model with friends-related variables.
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Next to our users we also gathered data from their friends (194,639). We computed five variables

that are important for the event that we are predicting, namely the total and relative number of

friends that are going to the focal event and the average number of total, soccer, and team events

the user’s friends attended.

3.3. Classification algorithms

In this section, we elaborate on the choice of our classification algorithms. In total, we use five

single classifier and ensemble techniques: Naive Bayes (NB), Logistic Regression (LR), Neural Net-

works (NN), Random Forest (RF), and Adaboost (AB). Naive Bayes is the least complex algorithm

because it only estimates the joint probability p(x, y). In contrast Logistic Legression estimates

the conditional probability p(y | x) and this can result in better performance [69]. Neural networks

are similar to logistic regression if the logistic activation function is employed but add additional

complexity by incorporating a hidden layer. This increases flexibility and this can result in better

performance. Random Forest adds additional complexity by using an ensemble of trees. Trees are

inherently nonlinear and incorporate interactions. Using many trees and combining them often

improves performance. Finally adaptive boosting (Adaboost) adds complexity by incorporating a

weighting mechanism that focuses on incorrectly classified instances in the previous iteration. We

will evaluate the added value of network variables for all these algorithms. This will allow us to

draw conclusions across a range of complexity levels. In the following paragraphs we will provide

more details about the different algorithms.

3.3.1. Naive Bayes

We use the original Naive Bayes algorithm as a method for probabilistic classification. This

method applies Bayes’ Theorem to classify new observations and naively assumes conditional class

independences [55]. Despite the fact that the conditional independence assumption is rarely sat-

isfied, it achieves reasonable performance and low computation times [55]. Several authors have

tried to overcome the problem of conditional dependency by introducing randomness such as ran-

dom feature selection and bagging [56, 73]. The function naiveBayes was used from the R-package

e1071 [66]. Gaussian distributions were assumed for the predictors.
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3.3.2. Logistic Regression

We use regularized Logistic Regression with the lasso approach to cope with overfitting. The

lasso (least absolute shrinkage and selection operator) sets a bound on the sum of the absolute

values of the coefficients forcing the coefficients to shrink towards zero [49, p219]. In this regard,

the value of the shrinkage parameter λ determines the amount of shrinkage. The higher the value

of λ the smaller the coefficients will be. We use cross-validation to determine the optimal shrinkage

parameter. The statistical R-package glmnet by Friedman et al. [37] is used to create our model.

We set the parameter α to 1 to obtain the lasso approach and we set the nlambda parameter to

100 (default) to compute the sequence of λ.

3.3.3. Neural Networks

We use the feed-forward artificial neural network optimized by BFGS with one hidden layer.

This approach is considered much more reliable, efficient and convenient than backpropagation and

has proven to be sufficient in a variety of cases [27]. Before implementing the neural network, we

rescale the numerical variables to [−1, 1] [12]. The binary variables are disregarded and coded as

{0, 1}. Scaling is necessary to avoid local optima and numerical problems and to ensure efficient

training. The statistical R-package nnet is used to build the neural network [75]. The network

weights are randomized at the start of the iterative procedure [76, p154]. This implies that the

results change for subsequent neural networks, which mimics the development of the human brain

[81]. We follow the recommendations of Ripley [76, p149] and set the entropy parameter to the

maximum likelihood method. The rang parameter which manages the range of initial random

weights was set to 0.5 (default). The parameters abstol and rel were also left at their default

1.0e−4 and 1.0e−8. Weight decay was used to avoid overfitting [27] and the maximum number of

weights (MaxNWts) and maximum number of iterations (maxit) were set at a very large number

(5000) in order to avoid early stopping. Finally a grid search was performed in order to determine

the weight decay and the number of nodes in the hidden layer [27]. In accordance to Ripley [76,

p163, p170] we sequenced over all combinations of decay = {0.001, 0.01, 0.1} and size = [1, ..., 20]

to determine the optimal combination.
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3.3.4. Random Forest

Random Forest combines bagging with random feature selection to build an ensemble of trees

[16]. Each tree is grown on an independent bootstrap sample and at each node of each tree

a randomly selected subset of features is evaluated [16]. To grow the ensemble all the trees are

aggregated by means of majority voting [16]. As a result, Random Forest copes with the instability

and the suboptimal performance of decision trees [29]. Two parameters have to be provided: the

number of trees and the number of predictors randomly selected at each node of each tree [57, 28].

We follow the recommendation of Breiman [16] to use a large number of trees (500) and the square

root of the total number of predictors as the number of predictors to be evaluated at each node.

We use the statistical R-package randomForest provided by Liaw and Wiener [62].

3.3.5. Adaboost

The original Adaboosting algorithm [36] sequentially reweights the training data [45, p337-

340]. In each iteration the observations that were misclassified in the previous iteration are given

more weight, whereas the correclty classified observations are given lower weight. Hence, instances

that are hard to classify are given more importance in each iteration. The final model is a linear

combination of all the previous models [45, p337-340]. We use stochastic boosting, one of the most

recent boosting variants which introduces randomness as an integral part of the procedure [39].

Randomness is induced by making bootstrap samples in which the propensity of an observation

being selected is proportional to the current weight [39]. There are two important parameters:

the number of iterations and the number of terminal nodes in the base classifier. In accordance

with Friedman [39] we determine the number of terminal nodes by setting the maximum depth of

the trees to 3 and we set the number of iterations to 500. To fit our model we use the statistical

R-package ada [22].

3.4. Performance evaluation

We use the area under the receiver operating characteristic curve (AUC or AUROC) to eval-

uate the performance of our classification models. AUC is argued to be an objective performance

measure for classification problems by several authors [54]. The receiver operating characteristic

curve (ROC) is a graphical representation of the sensitivity against one minus specificity for all

possible cut-off values [43]. AUC is a more adequate measure of classifier performance than PCC
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(Percentage Correctly Classified) [7] whenever the cut-off value that will be used at model deploy-

ment is unknown, because AUC evaluates the entire range of cut-off values [8]. AUC is defined as

follows:

AUC =

∫ 1

0

TP

(TP + FN)
d

FP

(FP + TN)
=

∫ 1

0

TP

P
d
FP

N
(1)

with TP: True Positives, FN: False Negatives, FP: False Positives, TN: True Negatives, P: Positives

(event), N: Negatives (non-event).

AUC is restricted between the values of 0.5 and 1, where the former denotes that the model

does not perform better than random and the latter indicates a perfect prediction [43]. If the AUC

is below 0.5 in the test set, this is a strong indication of overfitting.

3.5. Cross-validation

We use five times two-fold cross- validation (5x2cv) to make sure our results are not overly

optimistic or pessimistic [25, 1]. 5x2cv starts by randomly dividing the sample in two parts where

each part is used once as a training sample and once as a test sample. This process is repeated

five times and results in 10 AUCs per model [25]. We take the median of the results to obtain the

overall AUC of our models. As a measure of dispersion, the interquartile range (IQR) is used.

In order to test whether two models are significantly different from eachother we follow Demšar’s

[2006] suggestion to use the Wilcoxon signed rank test [83]. The Wilcoxon signed-rank test [83]

is a non-parametric test that ranks the differences in performance of two models while ignoring

the signs. Ranks are assigned from low to high absolute differences, and equal performances get

the average rank. The ranks of both the positive and negative differences are summed and the

minimum of those two is compared to a table of critical values. To be significant the smallest sum

of ranks should be smaller than the critical value.

This test is considered safer than a parametric t-test because the assumptions of normality and

homogeneity of variance [24] do not need to be met. However, when the assumptions of a t-test can

be satisfied, the Wilcoxon signed rank test has less power than a paired t-test. When the sample

size equals 10 verifying normality and homogeneity is problematic and thus the Wilcoxon signed

rank test is preferred [24].
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3.6. Variable importance evaluation

Because we are using a lot of predictors in our sample, it is important to know which variables

have great predictive power [77]. One way to do so is by calculating the variable importances. In

tree- based methods such as Random Forest we can evaluate the importance of our predictors by

using the total decrease in node impurities from splitting on the variable, averaged over all trees.

The Gini index is used as a measure of node impurity [17]. The importances are then averaged

over the 10 folds by taking the median of the 5x2cv variables importances. We used the importance

function in the randomForest package [62].

3.7. Partial dependence plots

Partial dependence plots allow one to graphically depict the relationship between an inde-

pendent and a dependent variable, after eliminating the average effect of the other independent

variables [38, 40]. This is analogous to multiple linear regression of y on all xj , where the coefficient

x1 accounts for the effect of x1 on y with the other variables kept constant. Partial dependence

plots are mostly used on decision tree-based methods and allow one to gain insight in how classi-

fication variables relate to the most important predictors [40, 45, p369-370]. In order to create a

partial dependence plot we follow the method described by Berk [14, p222].

For each value v in the range of a predictor x we create a novel data set where x only takes

on that value. All the other variables are left untouched. Next, for each novel data set, we score

all the instances using a Random Forest model that is built on the original data. Subsequently

the mean of half the logit of the predictions is calculated yielding one single value for all instances

called p. The final step in creating the partial dependence plot is plotting all the values v of x

against their corresponding p. All partial dependence plots are five times twofold cross-validated

using the interpretR R-package [10].

4. Discussion of results

4.1. Model performance

The cross-validated results are summarized in Figure 1 and Table 3. The main research question

of this study was to assess if friends (i.e., network) data add value over and above user data in

event prediction. We find that the inclusion of network variables results in an improvement of the
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AUC for all our classifiers. For the baseline model the AUC ranges from 65.21 % to 79.56 %, for

the augmented model from 66.01 % to 80.38 %. The increase in AUC ranges from 0.21 %-points to

0.82 %-points. Figure 1 also reveals that Adaboost (AB) is the top performing algorithm, followed

by Random Forest(RF), Logistic Regression (LR), Neural Networks (NN) and Naive Bayes (NB).

However, for computational reasons one might prefer RF since it allows parallel execution whereas

AB is sequential in nature.

The Wilcoxon tests (Table 3) indicate that the results are significantly different for three out of

five classifiers. The results show a significant difference on the 1% significance level for RF, AB and

NB and on the 10% significance level for LR. We found no significant difference for our NN classifier.

Adding friends data results in a slight increase in interquartile range (IQR). Nevertheless the IQRs

are low for all classifiers, indicating that all classifiers have stable results. The IQR also confirms

that Adaboost is the top performer because it has the smallest IQR. These findings confirm our

hypothesis that Facebook friends data can significantly improve the predictions in event attendance

prediction systems. It has to be noted though that for some classifiers results are not significant.

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

M
ed

ia
n 

A
U

C

NB LR NN RF AB

0.6521

0.7545 0.7499

0.7765

0.7956

0.6601

0.7595
0.752

0.7818

0.8038

Figure 1: Cross-validated AUC. The solid line represents the baseline model, the dashed line the

augmented model. NB = Naive Bayes, LR = Logistic Regression. NN = Neural Networks. RF =

Random Forest. AB = Adaboost.
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Table 3: Summary of cross-validated median AUC

NB LR NN RF AB

Base model 0.6521 0.7545 0.7499 0.7765 0.7956

Augmented model 0.6601 0.7595 0.7520 0.7818 0.8038

Wilcoxon test V = 0 V = 10 V = 21 V = 0 V = 0

p < 0.01 p < 0.10 p < 0.6 p < 0.01 p < 0.01

Table 4: Summary of cross-validated median IQR

NB LR NN RF AB

Base model 0.0039 0.0046 0.0086 0.0039 0.0035

Augmented model 0.0072 0.0160 0.0170 0.0057 0.0047

4.2. Predictors

In order to uncover what the main drivers of predictive performance are we first look at a scree

plot of the predictors (Figure 2). In the scree plot, the 200 top predictors of the model with friends

data are plotted against the median 5x2cv mean decrease in Gini in a descending order. It is

clear from this plot that predictors with rank higher than twelve only add little to our predictions.

Hence, we focus on the top twelve predictors in the rest of this discussion.
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Figure 2: Scree plot of the 200 most important predictors

Table 5 contains the importance of the top twelve predictors and Figure 3 the partial dependence

plots of selected variables. In Table 5 we observe that most of the top predictors are related to the

timing of the event and the friends variables. The most important predictor of event attendance is

whether the event ends on a Monday. In Figure 3a we clearly observe a positive relationship between

that predictor and event attendance. A plausible explanation can be found in the specific nature of

our data. Major soccer events are mostly held on a Sunday. Hence event promoters on Facebook

mostly set the ending of the event one day later (Monday). We also ran a plot (not shown)

of whether the event starts on a Sunday and found the same positive relationship. Conversely,

plots related to whether the event starts in the weekend depict a negative relationship with the

probability of attending (not shown). This reinforces our explanation that important soccer games

take place on Sunday (and their end time is always set to Monday on Facebook), minor soccer

games are mostly played on other days in the weekend and receive less public attention. We denote

that events with their end time on Monday, were not denoted as weekend events, this explains

the negative relationship with the response variable. In Figure 3b, we note a positive relationship

between whether the event starts in the month May and event attendance. The month May is

also traditionally the play-off season in European soccer leagues. The same logic can be applied
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to explain the positive relationship between the Spring season and our response variable, since the

month May lies in Spring season (not shown).

Table 5: Median cross-validated variable importance

No. Variable name Median decrease Gini

1 IND(event time == end day Mon) 20.107

2 IND(event time == start day Sun) 19.460

3 IND(event time == start month May) 18.023

4 COUNT(events) 16.447

5 IND(event time == weekend) 13.379

6 PERCENTAGE(friends event attending) 12.600

7 COUNT(friends event attending) 12.010

8 IND(event time == end day Sun) 10.814

9 IND(event time == start season Spring) 9.909

10 IND(event time == start day Sat) 9.878

11 IND (event time == start season Summer) 9.025

12 IND(event time == start month June) 8.146

The results in Table 3 and Figure 1 already clearly indicated that friends data improve model

performance. These results are substantiated in that network predictors (the total and relative

number of friends that indicated their attendance) are among the top ten predictors (sixth and

seventh variable in Table 5). Looking at the partial dependence plots in Figure 3d and 3e, we first

observe a positive and afterwards a negative effect, when more friends (more than 12 or 1.8%) are

attending. The main reason for this relationship can be found in the News Feed Algorithm (NFA).

Each time a friend interacts with something on Facebook, such as replying to an event invitation,

a user gets notified in his or her News Feed. However, in order to avoid information overload

Facebook limits the number of notifications for the same event. If a lot of friends are going, the

NFA will stop propagating the message through the News Feed due to anti-spam regulations [31].

This implies that the probability of attending will first rise with every (close) additional friend

that indicates attendance, and then decrease to normal once a given number of friends has been

reached. Generally, these findings are partially different from the findings of Aral et al. [2] and

Backstrom [4] who state that the adoption probability rises when friends already adopted. This
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partial difference is undoubtedly due to the many changes the NFA has undergone since these

studies have been published. For example, Facebook recently increased their anti-spam regulations

by hiding promotional posts in the user’s News Feed [26]. In addition, Facebook users now have

more control over what they see in their News feed [26].

The total number of events the user attended (Figure 3c) is constant in the beginning and

afterwards negatively related to our dependent variable. This implies that people will have an

equal propensity of attending until they attend too many events. This is a plausible relationship.

People don’t have an unlimited amount of time to attend events. The more events the user attends,

the less time he or she has to attend other events.

Finally, the predictors related to whether the event takes place in the Summer are negatively

related with our dependent variable (see Figure 3f). Again, we refer to the specific nature of our

data. In the Summer, the soccer season has ended and hence there are no important soccer events

taking place. A diagnostic plot of whether the event is held in June and our response variable

supports our hypothesis (not shown).
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Figure 3: Partial dependence plots
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5. Conclusion and practical implications

In this study we set out to (1) evaluate the added value of a Facebook user’s friends data over

and above user data in event predictions and (2) gain more insight in the top predictors of event

attendance.

The results suggest that augmenting the data with network variables increases the AUC between

0.22 %-points and 0.82 %-points. This is in line with the conclusion of Benoit and Van den Poel

[13] where the AUC also significantly rose with the inclusion of network effects. The top performing

algorithm is Adaboost, closely followed by Random Forest. This is similar to findings of [9], where

Adaboost and Random Forest came out as the best-in-class classifiers in a social media application.

The top predictors are mainly related to the event time such as the start day and end day of the

event. Network variables were also top predictors of event attendance. More specifically the

absolute and relative number of friends that are attending the event are very important. We also

provided a list of the top twelve predictors in Table 5 and partial dependence plots in Figure 3.

Our findings provide important insights for (1) Facebook Inc., (2) event promoters alike that

want to increase the number of attendees, and (3) companies that want to build event prediction

apps on Facebook. Facebook Inc. could incorporate our findings to adapt the News Feed Algorithm

(NFA) for events. Recently, Facebook has finetuned the NFA algorithm to give more control to the

user as to what he or she wishes to see and not to see in his or her News Feed [26]. Most of these

updates are related to Facebook Pages and spam. Events however, are not specifically mentioned.

A useful update could be to ask users to which extent they want to be informed about events,

thereby giving them more control. Users seem to be positively influenced by a certain group of

attendees. For example, users could indicate a threshold for the number of friends attending an

event that controls when events appear and disappear in their News Feed.

Also event schedulers and promoters on Facebook can utilize our findings. Event organizers

would benefit from more explicitly providing information about the attendees of an event. They

can, for example, send invitations to friends of the attendees and include in the notification the

number of friends that will attend.

Companies that want to create a Facebook app for event scheduling and promoting can also

benefit from our results. We have proven that the inclusion of friends data significantly improves

the accuracy of the prediction system. For example, when building an app that recommends events
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to a certain user, one could calculate which events are attended by his or her friends to generate

more accurate predictions.

6. Limitations and future research

First, this study is limited because of selection effects. We extracted our data with a custom-

built Facebook app via the Facebook Page of a European soccer team by offering a chance to win

a prize. It might be the case that some users were not interested in this prize and hence were

not willing to share their data. Another way of collecting data from Facebook is web-crawling

as proposed by Lampe et al. [53] and Lewis et al. [60]. Nevertheless, web-crawling also suffers

from the limitation that data cannot be extracted from private Facebook profiles. Generally, the

collected data from web-crawling and a Facebook application largely overlap. Our approach is less

intrusive since we ask permission from the user and provide a ‘rules and regulations’ section in the

app with our contact information. We also ensured the user that we anonymize all information and

do not extract private messages. Finally, we also provided a disclaimer explaining the purpose of

our academic research. Therefore, we believe that our approach is superior to web-crawling. Since

we only limit our data to a subsample, our results do suffer from generalizability issues. However,

regardless of this limitation our study is the first to investigate the added value of friends data in

event attendance prediction. Hence, we consider this study a valuable contribution to literature.

An avenue for future research can be to obtain a broader sample and more representative results.

A second limitation is that some of our predictors are limited in the number of values. Facebook

only allows to extract the 25 most recent entries for specific variables. To mitigate this problem

we computed the frequency of a specific time period as to no variable reaches this limit. The

frequency of status updates, photo uploads and link uploads was calculated for the last 7 days,

album uploads and check-ins for the last 4 months and video uploads and notes for the last year.

A third limitation is that we only include a limited number of friends variables in our analyses,

mostly the ones that are related to the focal event. Following Zhang et al. [87], a possible avenue for

future research could be to add more friends variables. We could investigate which type of predictors

yields the biggest increase in model performance. This would help practitioners understand which

elements in event attendance prediction systems make them as accurate and efficient as possible.
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